A droplet microfluidics platform for rapid microalgal growth and oil production analysis.

نویسندگان

  • Hyun Soo Kim
  • Adrian R Guzman
  • Hem R Thapa
  • Timothy P Devarenne
  • Arum Han
چکیده

Microalgae have emerged as a promising source for producing future renewable biofuels. Developing better microalgal strains with faster growth and higher oil production rates is one of the major routes towards economically viable microalgal biofuel production. In this work, we present a droplet microfluidics-based microalgae analysis platform capable of measuring growth and oil content of various microalgal strains with single-cell resolution in a high-throughput manner. The platform allows for encapsulating a single microalgal cell into a water-in-oil emulsion droplet and tracking the growth and division of the encapsulated cell over time, followed by on-chip oil quantification. The key feature of the developed platform is its capability to fluorescently stain microalgae within microdroplets for oil content quantification. The performance of the developed platform was characterized using the unicellular microalga Chlamydomonas reinhardtii and the colonial microalga Botryococcus braunii. The application of the platform in quantifying growth and oil accumulation was successfully confirmed using C. reinhardtii under different culture conditions, namely nitrogen-replete and nitrogen-limited conditions. These results demonstrate the capability of this platform as a rapid screening tool that can be applied to a wide range of microalgal strains for analyzing growth and oil accumulation characteristics relevant to biofuel strain selection and development. Biotechnol. Bioeng. 2016;113: 1691-1701. © 2016 Wiley Periodicals, Inc.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Raman spectroscopy compatible PDMS droplet microfluidic culture and analysis platform towards on-chip lipidomics.

Lipids produced by microalgae are viewed as a potential renewable alternative to fossil fuels, however, significant improvements in productivity are required for microalgal biofuels to become economically feasible. Here we present a method that allows for the use of Raman spectroscopy with poly(dimethylsiloxane) (PDMS) droplet microfluidic devices, which not only overcomes the high Raman backgr...

متن کامل

Numerical Study of Droplet Generation Process in a Microfluidic Flow Focusing

Microfluidic flow focusing devices have been utilized for droplet generation on account of its superior control over droplet size. Droplet based microfluidics addressed many scientific issues by providing a novel technological platform for applications such as biology, pharmaceutical industry, biomedical studies and drug delivery. This study numerically investigated the droplet generation proce...

متن کامل

High-throughput Analysis of Protein-protein Interactions in Droplet-based Microfluidics Using Fluorescence Polarization

In recent years droplet-based (or segmented-flow) microfluidic systems have emerged as a powerful technological platform for performing high-throughput chemical and biological experimentation. Herein, we have demonstrated the combination of fluorescence polarization and droplet-based microfluidics for the rapid analysis of protein-protein interactions. Fluorescence polarization is powerful tech...

متن کامل

A microfluidic photobioreactor array demonstrating high-throughput screening for microalgal oil production.

Microalgae are envisioned as a future source of renewable oil. The feasibility of producing high-value biomolecules from microalgae is strongly dependent on developing strains with increased productivity and environmental tolerance, understanding algal gene regulation, and optimizing growth conditions for higher production of target molecules. We present a high-throughput microfluidic microalga...

متن کامل

Development of a facile droplet-based single-cell isolation platform for cultivation and genomic analysis in microorganisms

Wider application of single-cell analysis has been limited by the lack of an easy-to-use and low-cost strategy for single-cell isolation that can be directly coupled to single-cell sequencing and single-cell cultivation, especially for small-size microbes. Herein, a facile droplet microfluidic platform was developed to dispense individual microbial cells into conventional standard containers fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 113 8  شماره 

صفحات  -

تاریخ انتشار 2016